FP BIOCk www.fpblock.com

VWhen to be welrd

Michael Snoyman
VP Software, FP Block
Functional Conference 2025

weird @D adjective

Synonyms of weird >

. of strange extraordinary character: ODD, Fantastic

. of, relating to, or caused by witchcraft or the supernatural

1
2
l weirdness roun

weird € noun

1 :FATE, DESTINY
‘ especidlly :ill fortune

2 :SOOTHSAYER

FP Block

What's weird?

e

| probably should have checked the
dictionary before naming the talk

\.

e

Let's focus on the first definition:
strange, extraordinary

\.

e

[hough witchcrarft may be relevant
to0o)

_

www.fpblock.com

i A——

FP Block A5 id . www.fpblock.com

THE FLAT EARTH SOCIETY
HAS MEMBERS ALL
AROUND THE GLOBE

But, sometimes
follow the crowd

FP Block www.fpblock.com

Disruption can
oe welra

If I’d listen to
customers, I’d given
them a faster horse

- Henry Fora

FP Block www.fpblock.com

com

v

block

WA|

Iox

>

A% .!\v

S

Welird investments can be
great

[Early Adopter]

[Get IN before the big boom]

[Get Rich]

FP Block www.fpblock.com

Or, 1t can suck

-

Everyone else left the
market

\.

-

You stuck around waiting
for the ‘inevitable’ pump

\.

But it just didn't happen

FP Block www.foblock.com

We want technology and developer
experience to improve

The world regularly makes terrible tech

. B -
Why should we decisions — why

?
CCHE We'd like to be able to predict the direction of

our iIndustry

And more: how can we effectively shape the
future?

FP Block www.foblock.com

FP Block

Weird things
that won

Structured code (vs GOTO and jumps)

COBOL and "human
languages (and than

anguage” programming

fully later lost)

Map/reduce vs for-loops-galore

XMLHttpRequest, aka AJAX, aka DHTML, aka
The Modern Web (for better or worse)

Object oriented coding

Encapsulation

www.fpblock.com

Competition of ldeas

[Yes, | am talking economics again J
LOW COST HIGH COST
Economics assumption: perfect
LOW Easier to slip into knowled J : |
. RUN awaly ge and rational actors
BENEFIT | sprints \ y
HIGH DUt o Neither is true! We won't always
RENEEIT D s st approved Make perfect decisions

| et's discuss what should win anad
what has won

\ J

FP Block www.fpblock.com

LOOK AT THESE PEOPLE. GLASSY-EYED AUTOMATONS

GOING ABOUT THEIR DAILY LVES, NEVER STOPPING s functional programming
TO LOOK AROUND AND 774! IM THE ONLY
CONSCIOUS HUMAN IN A WORLD OF SHEEP

good weird?

* Overall: yes

 But: it's a bad question!

* FPis ill defined

* Even with a definition, too many things
under the umbrella

* Not a binary, some things are better,
some worse

* Need to analyze things individually

* Part of why FP is dead: we already
won; many of our ideas are already
mainstream

* But not all of them

FP Block www.foblock.com

Patterns to
successful weirdness

FP Block

What succeeds?

 No need to rewrite the world

* Large benefits

 Small costs

e "Sexiness”

« Easier to work with (worse is better)

What doesn’'t succeed?

« Correctness (much to our chagrin)
* "Reason about code”
* Provides non-tangible benefits

www.fpblock.com

Ultimately: software has to be judged in the free market.
We need weird things that the market will value.

* That was lots of words without any code! Boo!!!

* Time to talk about concrete examples

 Warning in advance: I'm going to be
opinionated

Let's talk some tech o | |
o Everyone will disagree with something I'm

about to say
o My pointisn't to convince people I'm right

o Goalis to share my thought process

FP Block www.foblock.com

Typed Programming

FP Block

* People used to think types were a chore with no
benefit
o Old school C, C++, and Java certainly

promoted this concept!

* Many of us fought a valiant fight for strong type
systems

* We're not winning. We already won.

O

O

O

Python: type annotations galore
JavaScript: eww, everyone uses TypeScript!
JVM and .NET embracing ideas from Scala
and F#

Rust is very strongly typed and gaining
ground

Even Go had to add generics (arguably o
nod to typed programming)

www.fpblock.com

* Type inference!
o No one wanted to write int x =5 all the time

« Weak type systems (like C) hid the potential
values of types

o FP languages demonstrated you can
Why typed achieve lots of bug prevention
programming won? » Maybe more importantly: developer
productivity

o LSP/IntelliSense/Autocomplete is better
with types

o Avoids the need for lots of boilerplate tests
(but you still need to test your codelll)

FP Block www.foblock.com

» I'd argue: one of the core tenets of functional
programming
» Considered best practice in many programming
languages
o Though some older languages struggle to
Immutability By do it well
Default » Extends beyond just code
o Immutable

nfrastructure/Terraform/Infrastructure as
Code

o Arguably: blockchain, Git, content-
addressable storage

FP Block www.foblock.com

Winning
But not quite there yet

« The #1feature, bar none, that carries the best
power-to-weight ratio

* Core to ML and Haskell, adopted by Rust and
TypeScript extensively

* Destroys the need for the Visitor Pattern

Sum Types * Easy to explain to people

e Demonstrable benefits

o Compiler-driven development
o Reduced bugs
o Simpler to implement than Visitor pattern or

Church-encoding

FP Block www.foblock.com

XML Processing

FP Block

Example

Visitor pattern (Java/SAX)

Sum Types

public class MyHandler extends DefaultHandler {
// Implement handler methods as needed
public void startElement(String uri, String localName, String gName, Attributes
// Process start element

}

public void characters(char[] ch, int start, int length) {

// Process character data

}

public void endElement(String uri, String localName, String gName) {
// Process end element

}

saxProcessing :: Event -> I0 ()
saxProcessing (EventBeginElement name attrs) = do
putStrLn $ "Began an XML element: " ++ show name
for attrs $ \(key, value) ->
putStrLn $ show key ++ " is " ++ show value
saxProcessing (EventContent text) =
putStrLn $ "Some text: " ++ show text
saxProcessing _ =
putStrLn "I have a truly marvelous demonstration of

www.fpblock.com

Why haven't sum
types fully won yet?

FP Block

Not available in many popular
languages (Java, C#, Go)

Many programmers still unaware of

sum types

Name is arguably scary: sounds too

mathematical

Some people fail to see the advantage
of sum types (though that IME is rare)

www.fpblock.com

Often tied into sum types, but not
always

Pattern matching Already understood by most

orogrammers (switch statements)

Easy to explain “switch on steroids”

FP Block www.foblock.com

» Haskell's deriving, Rust's #[derive(..)]
* Haskell: extend with generics, TH, others

* Rust: proc macros

Auto—Deriving o Removes boilerplate

o Easier to write code
o Easier to maintain code

o Avoid bugs (next slide)

FP Block www.foblock.com

use std::{fmt::Display, str::FromStr};

#[derive(Debug)]
enum Color {
Red,
Blue,
Green,

}

impl Display for Color {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Resul
f.write_str(match self {
Color::Red => "red",
Color::Blue => "blue",
Color::Green => "green",

H)

} Spot the bug

impl FromStr for Color {
type Err = anyhow: :Error;

fn from str(s: &str) -> Result<Self, Self::Err> {
match s {
"red" => Ok(Color::Red),
"blue" => Ok(Color::Blue),
_ => Err(anyhow: :anyhow! ("Unhandled input {s}")),

}
}
}
fn main() {
let green: Color = Color::Green.to_string().parse().unwrap();
println!("{green:?}"); www.foblock.com

#[derive(Debug, strum::Display, strum::EnumString)]
#[strum(serialize all = "snake case")]
enum Color {

Red,
Blue,
Green,

}

fn main() {

let green: Color = Color::Green.to_string().parse().unwrap();
println!("{green:?}");

Better, Shorter, Safer

FP Block www.fpblock.com

Great But Niche
There's no free lunch

Software Transactional
Memory

 The absolute best way to do shared-

memaory concurrency

 Easy to

learn

* Solves a real, well understood problem

(data races)

* Performance is Good Enough, sometimes

oetter t
e But the

Nan alternatives

nig catch: it only works well in @

pure programming language

FP Block

- | Transfer 40 from Alice to Bob.

transfer
.. Tvar Int -- N Alice
-> Tvar Int -- N Bob
-> I0 ()

transfer aliceVar bobvVar = atomically $ do

let amt = 40
aliceOrig <- readTVar aliceVar
1f aliceOrig >= amt

then pure ()

else retry

- OR

check (aliceOrig >= amt)

writeTVar alicevar $ aliceOrig - amt
bobOrig <- readTVar bobVvar
writeTVar bobvVar $ bobOrig + amt

www.fpblock.com

Green Threads

« Simplest way to write asynchronous |/O
code
* Avoids the "function coloring” problem
entirely
« Composes with existing error handling
« No need to litter code with async/await
noise
* The catch
o Plenty of languages don't support it!
o Some languages (like Rust)
intentionally avoid it because it
conflicts with other goals

FP Block www.fpblock.com

Macros/Metaprogramming/Codegen

» Auto-deriving is one example
» Serde and Clap are great Rust
ibraries leaning into this
* Again: shorter, safer code
« Downsides
o Longer compile times
o Less transparency about your
code
o Difficult to make modifications
 Code on next two slides

$active)

FP Block www.foblock.com

use clap::Parser;

#t[derive(clap::Parser)]
struct Opt {
#[clap(subcommand)]
command: Sub,
#[clap(long, default _value = "Michael", global =
name: String,

}

#t[derive(clap::Parser, Debug)]
enum Sub {

true)]

michael 1in in weird on ¥ main [?] via & v1.80.1
-» ./target/debug/weird hello
Hello Michael

michael 1in in weird on ¥ main [?] via & v1.80.1
-» ./target/debug/weird goodbye --name "Functional Conf"
Goodbye Functional Conf

michael 1in in weird on ¥ main [?] via & v1.80.1
- echo But not quite yet :)Jj

JSON Parsing with Serde

Hello,
Goodbye,

3

fn main() {
let Opt { command, name } = Opt::parse();
println!("{command:?} {name}");

1

FP Block

www.fpblock.com

const JSON _VALUE: &str = r#"{"name":"Alice","age":30}"#:;

#t{[derive(serde: :Deserialize)]
struct Person {

name: String,

age: u32,
}

fn main() {
let Person { name, age } = serde json::from str(JSON VALUE).unwrap();
println!("{name} 1s {age} years old");

JSON Parsing with Serde

FP Block www.fpblock.com

 Good general-purpose way to think about coding
* |dentifies a recurring pattern, recommends better

APls
» Solves a surprisingly large class of different

oroblems (I/O, error handling, async)
* |'ve even had JavaScript developers describe Rust
Monads as "monadic” ;)
* But
o Deservedly or not, considered very complicated

(scares people away)

o Difficult to explain a value proposition — it
doesn't directly solve a problem people know
they have

FP Block www.foblock.com

Typeclasses /

FP Block

Traits

Great feature, full stop
Easy to understand (ignoring advanced features)
Solves a real problem people understand (type safe
code generalization)
Alternatives exist (interfaces, modules, dictionary
passing), IMO all inferior
Downside
o Requires language support, some programmers
simply can't use them
o Many programmers in other languages don't
realize what they're missing
o Could arguably be moved to the “already won”
section

www.fpblock.com

The Controversial Parts
This is how flame wars start

* Three solutions to similar problems
* Docker is the clear winner by marketshare

 Docker won because:
o Delivered 80% of the benefits (isolate my code

from system-level libraries/files/etc)
Docker vs Nix vs o With a fraction of the effort (use existing
Unikernels ibraries, tools, don't rewrite the build system,
etc.)

* | love the idea of unikernels, and want to play with
them, but it's never been worth the effort

* |'ve only had negative interactions with Nix (yes, you
can all flame me)

FP Block www.foblock.com

* Lots of people love 'em some code golf
 Two minor examples: Haskell's LambdaCase, Rust's
let-else

* I'm absolutely in the "get off my lawn" category
Millions of * I'm not a fan of adding lots of new ways to do the
Syntactic same thing

Extensions o Benefit: code gets marginally shorter
o Cost: more difficult to read code, decision point

of how to write things constantly
 Almost everyone I've worked with probably
disagrees with my stance

FP Block www.foblock.com

* Yes, they are two totally different concepts!
* In both cases:

o There are strong reasons to like them

o The choice is very different from other

Laziness By programming languages
Default, . . .
. o The benefits are difficult to explain to someone
Referential . .
INn under 5 minutes
Transparency

* Didn't | say STM was amazing because of purity?
Yes.

o Benefit(STM) > Cost(STM)
o Benefit(STM) < Cost(STM) + Cost(Purity)

FP Block www.foblock.com

« REPL-based development (though I'm personally
not a huge fan)

* Hot code loading

e Type driven development (typed holes, the
undefined trick, etc.)

Honorable * Associated types

Mentions: The » Doctests
Positives ¢ Return type polymorphism (e.g. mempty :: Monoid m
=> m)

 Refinement types

Why? They add useful functionality, don't add a lot of

cognitive overhead, compose well with other features.
FP Block www.foblock.com

e Content-addressed code
* Linear typing

 Dependent types
* Unigueness types

* GADTs
Honorable » Algebraic effects
Mentions : Don't
Be Weird Why? Benefits difficult to explain, require more

cognitive overhead to learn and use.

They could be great in the right package (e.g. Rust's
affine types for ownership)

FP Block www.foblock.com

Closing Thoughts
Put down the pitchforks please

FP Block

The Novelty
Budget

Credit to Mark Wotton
Similar to the 80/20 rule
You can only use so much novel tech before your

project will break

Aka don't be too weird

Weirdness introduces potential incompatibilities
and other unknowns

Don't be greedy! Choose 1-3 novel things, use
standard technology elsewhere

When your weird choices succeed, they'll become
standard, and you can start adding new weird
[dallglefs

ve personally seen way too many projects killed by

oeing too weird

www.fpblock.com

https://x.com/mwotton

FP Block

Conclusion

Don't be a lemming, but don't be a revolutionary

Find the highest value things you can change and

focus on those

We don't need 100% perfection in our tech stack

Take the big wins, outcompete other players,

demonstrate that your ideas work
Soon enough you'll change the world

www.fpblock.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

