
Strongly Typed Financial Software

• Michael Snoyman

• VP Software, FP Block

• Rustikon 2025, Poland

Code for this presentation available at:

https://github.com/snoyberg/rustikon-2025

We’re hiring! Catch me at the afterparty for more info.

https://github.com/snoyberg/rustikon-2025

What is Rust?

Systems
programming

language

High
performance

No garbage
collector

Zero cost
abstractions Procedural

But what do I like in Rust?

Statically typed

Strongly typed (more on this shortly)

Immutable-by-default

Pattern matching

Built in test suites

Property testing

And much more! Everyone can have their own favorite parts of Rust

Remember to Rust in moderation

Static vs strong typing

• Examples: C, C++, Java, RustStatic typing: types are checked at
compile time.

• Examples: Python, JavaScript, PHPDynamic typing: types are checked
at runtime.

• Examples: Rust, Haskell, OCaml
Strong typing: the language makes it

easy to express complicated
invariants in the type system.

• Examples: C, Java
Weak typing: the language does not
make complicated invariants easy

to express.

What are “strong typing” features?

Sum types Newtypes
Structural

polymorphism
(generics)

Checked
parametric

polymorphism
(traits)

Encapsulation
(smart

constructors)

Nominal typing
(versus, e.g.
TypeScript’s

structural typing)

Associated types Parameterized
traits

Compiling should
fail!

• Strong types can prevent classes of bugs.

• We want to code in a way that leverages these
strong types.

• Result will be failed compilation!

• This is a good thing! It tells us exactly where to fix
our code.

Financial software concerns

• Precision matters more than many other domains
• Usually involves specific laws around rounding, for example

• Mistakes can lead to loss of money and/or jail time

• Easy to mix up many different “numbers”
• E.g. don’t accidentally add a price in dollars and another in euros

• Some values can never be 0, others can never be negative, others can
be both

What’s wrong with this code?

• Floating point representation of an
integral value

• Floating point rounding may lead
to incorrect results

• The math is wrong! We shouldn’t
add prices together like that

Can we make these kinds of mistakes impossible?

Add some newtypes

• Use the Decimal datatype

• Newtype wrappers to represent price
versus the total in USD

• Even better: put the newtypes in their
own module, force only safe construction
(smart constructors)

• Do not define incorrect operations e.g.

• Cannot multiply prices

• Cannot add prices

• The code no longer compiles, that’s
great!

And make it compile

• Add in operations (Add and
Display) where they make sense

• Use the correct data types in
main, as prompted by the
compiler

• The Usd data type knows how
to display correctly

• Cannot accidentally add the
prices together

Taking it too far

• There’s always room to keep making stronger
types

• At some point, there are diminishing returns

• Don’t add in extra type safety for fun

• Add it where:

• You’re preventing a likely bug from occurring

• The extra effort to get this type safety is
warranted by the protection

• Concretely: I'd not write this kind of code, even
though it’s more type safe

The rest of this talk
Everyone loves code, right?

Let’s go through some!

We’re going to build a “spot swap” application

Server
• Tracks a user’s balance of USD vs Euros
• Allows swaps between them
• Admin can give away free money (yay!)

Client (in Rust, of course)
• View balance
• Trade dollars for euros (or vice versa)

Caveat emptor!

Translation: buyer beware

The code we’ll be looking at is not the best approach possible

I’ve taken some approaches to show off Rust type abilities

Feel free to ask on any point whether I’d recommend it in production

Also: I legitimately made a bunch of errors while writing this code that the type system and test
suite caught

Numerics

https://github.com/snoyberg/rustikon-2025/tree/main/packages/numeric

Need to represent money

Want to use a decimal type

In real code: please use an existing library!

We'll write our own

https://github.com/snoyberg/rustikon-2025/tree/main/packages/numeric

https://github.com/snoyberg/rustikon-2025/tree/main/packages/numeric

Encapsulation

• Define our UnsignedDecimal

• Simple wrapper around u128

• Enforces invariants around decimal
handling

• Type is defined in a private submodule

• We expose raw operations to the rest of
the crate

• Then we provide a nicer API within the
crate for public consumption

• But there aren't really any invariants to
enforce here...

Signed decimals

• Same private submodule approach

• Builds on UnsignedDecimal, adds a
negative field

• Problem: now there are two
representations of 0!

• Solution: enforce an invariant

• from_raw_value enforces the
invariant

• No other part of the codebase can
create a SignedDecimal

Positive decimals
• Lots of financial operations want to

ensure "greater than 0"

• Example: price of assets must always be
non-zero

• New wrapper around UnsignedDecimal

• New invariant to implement: reject 0

• Return a Result from new representing
the possibility of a 0

• new is a smart constructor

Parsing with smart
constructors
• No explicit data validation

• Leverages existing parse logic for
UnsignedDecimal

• Invariant is automatically enforced via
PositiveDecimal::new

• By hiding internals of PositiveDecimal, we
know the only way to construct it is via
the smart constructor

• One example, the rest of the numerics
crate shows others

Assets

• Our code will need to distinguish between USD and EURO values

• We could use our Decimal types directly for this

• Downsides
o Very easy to use USD for EUROs or vice-versa.

▪ I made this mistake many times while writing the code, the compiler saved me.

o No tagging in the on-the-wire representation to disambiguate
▪ In Yesod, I call this the boundary issue.

• Instead, we'll have tagged datatypes to represent assets

https://github.com/snoyberg/rustikon-2025/tree/main/packages/common

https://github.com/snoyberg/rustikon-2025/tree/main/packages/common

Parameterized Types, Phantoms, and
tagging

• We want to distinguish different kinds of
assets

• Use a type parameter to create different
types

• Also carry over Unsigned vs Positive (we
could also do Signed)

• Need to use PhantomData – no runtime
representation

• Automatically get validation guarantees
of underlying data type

• Compiler can now distinguish between
dollars and euros

Asset Trait and Macro
• Trait (ad-hoc polymorphism) for any

assets

• Helper macro to generate concrete
datatypes

• Requires some upfront setup

• After that, adding new assets is trivial

Some type safety!
• This code doesn't compile

• Not compiling is a GOOD THING!

Representing prices
• Want to discuss the price of the base

asset (e.g., apples) in terms of the quote
asset (e.g., dollars)

• Easy to make mistakes about this when
dealing with Forex (is USD or EURO the
base asset?)

• Price<Usd, Euro> means "how many
EUROs to buy 1 USD?"

• Price<Euro, Usd> means "how many USDs
to buy 1 EURO?"

• No need to check for divide-by-zero, we
know that base and quote are both
positive

Strongly Typed Messages

Server Side Code
• Leveraging Axum for a web server

• Uses serde + JSON for serialization

• Data type prevent misusing values

• Serialization rules ensure the on-the-wire
data is correct

Do we have time to check out the code
itself?

https://github.com/snoyberg/rustikon-
2025/blob/main/packages/server/src/main.r
s

https://github.com/snoyberg/rustikon-2025/blob/main/packages/server/src/main.rs
https://github.com/snoyberg/rustikon-2025/blob/main/packages/server/src/main.rs
https://github.com/snoyberg/rustikon-2025/blob/main/packages/server/src/main.rs

I wrote a bug! Can you find it?

• I promise I didn't do this on
purpose

• But while testing, I found a bug
in the code

• Can you see what the problem
is?

• Can we prevent this from
happening in the future?

Needs moar types

• Problem: I was subtracting dollars and euros.

• Fix is easy: use the right field!

• Bigger problem: not enough types.

• Solution: use more types!

https://github.com/snoyberg/rustikon-
2025/commit/956efd333e2865c23456a73167a3d5dec47fbcff

https://github.com/snoyberg/rustikon-2025/commit/956efd333e2865c23456a73167a3d5dec47fbcff
https://github.com/snoyberg/rustikon-2025/commit/956efd333e2865c23456a73167a3d5dec47fbcff

Leptos Client
Frontend built using Leptos and leptos-query

I love the signal model, much nicer for me
than React

But there are still some rough edges

Since it's Rust: reuse all the types

Component code
• Leptos has "components" like React

o Slightly different in behavior

• Components can use a JSX-like syntax

• Data is all pure Rust

• All the normal display functions work in
Leptos code

• Simple example: displaying wallet
balances

Over the wire
• Data sent over the wire includes asset

information

• Application code (server and client) never
added that explicitly

• Just by using strong types that have been
properly designed, we get extra
guarantees at runtime!

Thank you!

• End of the main content

• Happy to take questions now

• If there's time, we can load up the main app

Full source code: https://github.com/snoyberg/rustikon-2025

We’re hiring Rust devs. Find me at the afterparty if you’re interested.

https://github.com/snoyberg/rustikon-2025

	Slide 1: Strongly Typed Financial Software
	Slide 2: What is Rust?
	Slide 3: But what do I like in Rust?
	Slide 4: Remember to Rust in moderation
	Slide 5: Static vs strong typing
	Slide 6: What are “strong typing” features?
	Slide 7: Compiling should fail!
	Slide 8: Financial software concerns
	Slide 9: What’s wrong with this code?
	Slide 10: Add some newtypes
	Slide 11: And make it compile
	Slide 12: Taking it too far
	Slide 13: The rest of this talk
	Slide 14: Caveat emptor!
	Slide 15: Numerics
	Slide 16: Encapsulation
	Slide 17: Signed decimals
	Slide 18: Positive decimals
	Slide 19: Parsing with smart constructors
	Slide 20: Assets
	Slide 21: Parameterized Types, Phantoms, and tagging
	Slide 22: Asset Trait and Macro
	Slide 23: Some type safety!
	Slide 24: Representing prices
	Slide 25: Strongly Typed Messages
	Slide 26: Server Side Code
	Slide 27: I wrote a bug! Can you find it?
	Slide 28: Needs moar types
	Slide 29: Leptos Client
	Slide 30: Component code
	Slide 31: Over the wire
	Slide 32: Thank you!

